
Introduction

• Current tools for interpreting

human-written source code

(parsers) provide misleading

information given an unexpected

input.

• Novice programmers thus find it

difficult to use the information

provided by the parsers to fix their

broken code [1], [2], [3].

Method
• In order to train the neural network,

we needed a large dataset of

positive and negative samples.

Results

• Mutations created randomly do not

truly represent real errors.

• Machine learning can take a long

time to train.

• The model needs more training

data and neurons to better learn the

language.

• Learning about different types of

mistakes will allow for future

improvement in teaching

programming to others.

Acknowledgements

References

• I would like to thank my lab

supervisors: Eddie Santos and

Joshua Campbell, and my supervisor

Dr. Abram Hindle for their support

throughout my internship.

• Thank you to the Software

Engineering lab and the High School

Internship Program (HIP) for

presenting this opportunity.

Purpose
• Provide the location (line number)

and fix token given a source file

with a single token syntax error

• Use an artificial neural network to

automatically find the error

Collect ~450,000

syntactically-valid

JavaScript files

Chosen sample size for

training: 2000

Token Batch Size: 66

Window Size: 10

• Wrote script to mutate the sample

size

• 3 types of mutations were created.

Files were tokenized and

standardized to a set

vocabulary of 88 tokens.

Method Continued Mutation:

Insertion

Valid

Code

Mutation:

Deletion

Mutation:

Substitution

Total Training Data: 8000 files

Input: Window with 10 Tokens

Output: Error + Token + Class

+ Location + Fix Token

Conclusions

ErrorDeep: Using an Artificial Neural Network to

Detect Syntax Errors and Suggest a Fix
Dhvani Patel, Eddie Santos, Joshua Campbell, Dr. Abram Hindle

University of Alberta, Dept. of Computing Science, Software Engineering Lab

[1]

[2]

[3]

[4]

[5]

[6]

E. S. Tabanao, M. M. T. Rodrigo, and M. C. Jadud, “Identifying at-risk

novice Java programmers through the analysis of online protocols,” in

Philippine Computing Science Congress, 2008.

M. C. Jadud, “A first look at novice compilation behaviour using bluej,”

Computer Science Education, vol. 15, no. 1, pp. 25–40, 2005.

E. S. Tabanao, M. M. T. Rodrigo, and M. C. Jadud, “Predicting at-risk

novice Java programmers through the analysis of online protocols,” in

Proceedings of the seventh international workshop on Computing

education research, ser. ICER ’11. New York, NY, USA: ACM, 2011, pp.

85–92. [Online]. Available: http://doi.acm.org/10.1145/2016911.2016930

F. Chollet, “Keras,” https://github.com/fchollet/keras, 2015

Theano Development Team, “Theano: A Python framework for fast

computation of mathematical expressions,” May 2016, preprint. [Online].

Available: http://arxiv.org/abs/1605.02688

T. Tieleman and G. Hinton, “RMSprop gradient optimization,” April 2014,

course slides. [Online]. Available: http://www.cs.toronto.edu/

∼tijmen/csc321/slides/lecture slides lec6.pdf

2000
Valid
Files

Valid
output

if (Identifier { == = Identifier Identifier True

ERROR NO ERROR

INSERTION DELETION SUBSTITUTION

;

if (Identifier { == = Identifier Identifier True ;

)

FIX TOKEN NO FIX TOKEN

2000
Insertion
Files

2000
Deletion
Files

 2000
Substitution
 Files

Insertion
output

Deletion
output

Substitution
 output

Keras[4] Model Architecture:

Layers: Type Output dim. Activation

Dense 4 ReLU

Flatten

Dense 128 ReLU

Dense 128 ReLU

Dropout Rate: 0.5

Dense 4 ReLU

Dropout Rate: 0.5

Activation softmax

Input: One-hot matrix Backend: Theano [5]

Output: Categorical distribution

Loss: Categorical cross-entropy

Optimizer: RMSprop[6], initial learning

rate = 0.001, momentum = 0.3

Takes future,

unknown data and

produces the same

output format as

training.

Test Model

