ErrorDeep: Using an Artificial Neural Network to
SNIVERSIIY OF Detect Syntax Errors and Suggest a Fix

ALBERTA Dhvani Patel, Eddie Santos, Joshua Campbell, Dr. Abram Hindle

University of Alberta, Dept. of Computing Science, Software Engineering Lab

Introduction .
Method Continued A
» Current tools for interpreting Mutation:

human-written source code « Wrote script to mutate the sample > Insertion

(parsers) provide misleading Size

iInformation given an unexpected » 3 types of mutations were created.
INnput.

Novice programmers thus find it Total Training Data: 8000 files
difficult to use the information '

provided by the parsers to fix their _ _ Mutation:
broken code [1], [2], [3]. Input: Window with 10 Tokens Deletion

(7] (] i) [==] [ientiter] [] [sentier) = [rwe] -] CONCIUSIONS

* Mutations created randomly do not

. truly represent real errors.
OUtDUt' Error + Token + Class * Machine learning can take a long

+ Location + Fix Token time to train.

Mutation: The model needs more training
Purpose Substitution data and neurons to better learn the

Provide the location (line number) Iangugge. T :
and fix token given a source file , — — — Learning about different types o
with a single token syntax error EI EI [I mistakes will allow for future
Use an artificial neural network to Improvement in teaching
automatically find the error programming to others.

Method 2000 2000 References

Insertion Deletion Substitution - ——
: [1] E. S. Tabanao, M. M. T. Rodrigo, and M. C. Jadud, “/dentifying at-risk
e In Ordel‘ tO tra|n the neural network, F"es Fll es novice Java programmers through the analysis of online protocols,” in

we needed a Iarge dataset of Philippine Computing Science Congress, 2008.

[2] M. C. Jadud, “A first look at novice compilation behaviour using bluej,”

SoLE - Computer Science Education, vol. 15, no. 1, pp. 25-40, 2005.
pOS|t|Ve and negatlve Samples' [3] E. S. Tabanao, M. M. T. Rodrigo, and M. C. Jadud, “Predicting at-risk

: . . . novice Java programmers through the analysis of online protocols,” in
‘ > Insertion Deletion Substitution Proceedings of the seventh international workshop on Computing

education research, ser. ICER ’11. New York, NY, USA: ACM, 2011, pp.
OUtpUt OUtpUt OUtpUt 85-92. [Online]. Available: http://doi.acm.org/10.1145/2016911.2016930
[4] F. Chollet, “Keras,” https://github.com/fchollet/keras, 2015

CO I I eCt ~450 OOO [5] Theano Development Team, “Theano: A Python framework for fast
: computation of mathematical expressions,” May 2016, preprint. [Online].

Sy tacticall V=V alid Available: http://arxiv.org/abs/1605.02688

[6] T. Tieleman and G. Hinton, “‘RMSprop gradient optimization,” April 2014,

J AV aSC ri pt fl I es course slides. [Online]. Available: http://www.cs.toronto.edu/

~tijmen/csc321/slides/lecture slides lec6.pdf

Keras[4] Model Architecture:

| | _ Acknowledgements
Files were tokenized and Input: One-hot matrix Backend: Theano [5] e
Standardized to a set Layers: Type Output dim. Activation Test Model WOUICTIKE 10 thani my 1a

: C supervisors: Eddie Santos and
vocabulary of 88 tokens. Dense 4 ReLU Output: Categorical distribution :: Takes future, e

Joshua Campbell, and my supervisor
Flatten unknown data and P y SUP

: Dense ReLU _ Dr. Abram Hindle for their support
Chosen sample size for Dense ReLU Loss: Categorical cross-entropy produces the same throughout my internship.

training: 2000 Dropout Rate: 0.5 output format as Thank you to the Software

: D RelLU Tal . . :
Token Batch Size: 66 Df::ut Rate: 0.5 Optimizer: RMSprop|6], initial learning training. Engineering lab and the High School
Window: Size: 10 Activation softmax rate = 0.001, momentum = 0.3 Internship Program (HIP) for
presenting this opportunity.

